PRE-FINAL EXAMINATION (2022-23)

Set - A

Class: XI
 Sub: Maths (041)

M.M: 80

Time: $\mathbf{3}$ hrs.

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

S. No.	Section-A (This section comprises of Multiple-choice answer type-questions (MCQ's) of 1 marks each)	Marks
1.	For set $\mathrm{A}, A \cup A=A$, This is (a)Law of U (b)Law of identity element (c)Idempotent law (d)Commutative law	1
2.	Find the range of $f(x)=\frac{x-2}{x-1}$ (a)R (b) $R-\{1\}$ (c) $R-\{-1\}$ (d)None	1
3.	.If $(2 x, y-x)=(y+3,0)$ then the value of y is (a) 3 (b) -3 (c) x (d)-x	1
4.	The value of $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}$ is (a) 1 (b) 0 (c) $1 / 2$ (d) 2	1
5.	If $\alpha+\beta=\frac{\pi}{4}$, then the value of $(1+\tan \alpha)(1+\tan \beta)$ is (a) 1 (b) 2 (c)-2 (d)none of these	1
6.	The value of $\sin \frac{31 \pi}{3}$ is (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) 1	1
7.	The modulus of $6-i$ (a) 37 (b) $6+i$ (c) 6 (d) $\sqrt{37}$	1
8.	If $a+i b=c+i d$ then (a) $a^{2}+b^{2}=0$ (b) $c^{2}+b^{2}=0$ (c) $d^{2}+b^{2}=0$ (d) $a^{2}+b^{2}=c^{2}+d^{2}$	1
9.	If $-3 x+17<-13$, then (a) $x \in(10, \infty)$ (b) $x \in[10, \infty)$ (c) $x \in(-\infty, 10]$ (d) $x \in[-10,10]$	1
10.	The number of 6 digit numbers, all digits of which are odd is (a) 5^{6} (b) 5^{5} (c) 6^{5} (d) 6^{6}	1
11.	Using Binomial theorem, If 25^{15} is divided by 13 then remainder is (a)-12 (b) 12 (c) 1 (d)-1	1

12.	Find the value of k for which $-\frac{2}{7}, k,-\frac{7}{2}$ are in G.P. (a) ± 1 (b) 1 (c) -1 (d)None of these	1
13.	The $3^{\text {rd }}$ term of G.P. is 4 , the product of its first 5 term is (a) 4^{3} (b) 4^{4} (c) 4^{5} (d)None of these	1
14.	The various numbers occurring in a sequence are called (a)Series (b)Terms (c)General term (d) None	1
15.	The slope of line making an angle of 45° with x -axis clockwise is (a) 1 (b) -1 (c) $\frac{1}{\sqrt{2}}$ (d) $-\frac{1}{\sqrt{2}}$	1
16.	Distance of point ($-1,3$) from the line $3 x+4 y-1=0$ (a) $8 / 5$ units (b) $-8 / 5$ units (c) $6 / 5$ units (d) $-6 / 5$ units	1
17.	The inclination of line $\sqrt{3} x+3 y=5$ with x -axis is (a) 180° (b) 60° (c) 30° (d) 150°	1
18.	The equation of YZ plane is (a) $x=0$ (b) $y=0$ (c) $z=0$ (d) $(0,0,0)$	1
	Assertion-Reason based Questions In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A . (b) Both A and R are true but R is not the correct explanation of A . (c) A is true but R is false. (d) A is false but R is true	
19.	Assertion (A): A total of 360 words can be generated using all the letters of 'BHARAT' (with or without meaning) Reason(R):Total no. of combinations of n different things taken r at a time is given by $n_{C_{r}}$.	1
20.	Assertion(A) :An angle of 11/7 is equivalent to 90°. Reason (R): Angle in radian =Angle in degree $\times \frac{\pi}{180^{\circ}}$	1
	Section-B (This section comprises of very short answer type-questions (VSA) of 2 marks each)	
21.	Prove that $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$	2
22.	Evaluate : $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $n \in N$ OR If $(x+i y)^{1 / 3}=u+i v$, where $x, y, u, v \in R$ then show that $\frac{x}{u}-\frac{y}{v}=-2\left(u^{2}+v^{2}\right)$	2
23.	Solve the inequation $\quad \frac{2 x-3}{4}+8 \geq 2+\frac{4 x}{3}$	2
24.	In how many ways can the letters of the word FAILURE be arranged so that the consonants may occupy only even position? OR Find the number of different words that can be formed from the letters of the word 'TRIANGLE', so that no vowels are together .	2
25.	Find the angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.	2

	Section-C (This section comprises of short answer type-questions (SA) of $\mathbf{3}$ marks each)	
26.	A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?	3
27.	If $f(x)=\frac{1+x}{1-x} \quad$ show that $\quad \frac{f(x) \cdot f\left(x^{2}\right)}{1+[f(x)]^{2}}=\frac{1}{2}$	3
28.	Prove that $\sin \theta \sin \left(60^{\circ}+\theta\right) \sin \left(60^{\circ}-\theta\right)=\frac{1}{4} \sin 3 \theta$, hence find k , if $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}=k$ OR Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$	3
29.	A milkman has 80% milk in his stock of 1000 litres of adulterated milk. How much 100% pure milk is to be added to it so that purity is between 90% and 95%.	3
30.	A group consists of 4 girls and 7 boys, In how many ways can a team of 5 members be selected if the team has (i) No girl? (ii) At least one boy and one girl (iii) At least three girls	3
31.	Find the equation of the set of points P , the sum of whose distances from $\mathrm{A}(4,0,0)$ and $\mathrm{B}(-4,0,0)$ is equal to 10 .	3
	Section-D (This section comprises of Long answer type-questions (LA) of 5marks each)	
32.	If $\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$,then prove that $\cos (\alpha-\beta)=$ $\frac{a^{2}+b^{2}-2}{2}$ OR Prove that $\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ}=\frac{1}{16}$	5
33.	Using Binomial theorem if a and b are distinct integers, prove that $\mathrm{a}-\mathrm{b}$ is a factor of $a^{n}-b^{n}$, whenever n is a positive integer.	5
34.	The ratio of A.M. and G.M. of two positive numbers a and b is $\mathrm{m}: \mathrm{n}$, show that $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$	5
35.	If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$, prove that $p^{2}+4 q^{2}=k^{2}$.	5

	Section-E (This section comprises 3 case study/passage-questions of 4 marks each with two sub-parts.)	
36.	Five students Ajay, Syam, Rahul ,Ravi and Deepak are getting bored of their regular study. They go to playground and sit in a straight line.	$\mathbf{4}$
	On the basis of above information, answer the following :	

